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Section 1. Introduction

ihe Fast Fourier Trensform (FFT) ard modular arithretic are

two distinct techniques which recently have been employec to
increase the efficiency of numerous al;crithms in the erea of
symbolic and algebraic manipulation. ictivated by work done on
fast large integer multiplication by Sck rhage and Strassen [11]
and by Knuth [7], this gaper analyzes tie question of when trese
two techniques can be utilized concurrer:iy. The desirability of
the convolution property of the Fil suggests a practical
definition for the support of an FIT, wiile a generalization of
the modular rings of integers motivates a reasonable definition
of a finite computation structure. A Finite Conputation
Structure is defined to be a commutative ring with unity, and of
Tinite, non-zero characteristic. This report first corpletely
characterizes the modular rings of integ:uis which support the F¥T
b% considering the prime factorizatica «f the modulus. This
characterization is then extended t»o provide the fcllowing
result: ‘Theorem: Iet R be a finite coiputation structure of
characteristic m. Then R will support a K-point FFT if K divides
p~1 for each prime p dividing m. The peper tlien concludes with
examples of the application of this result to the protlems of
computing products and powers of symbolic mnultivariate

polynomials.
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Section 2. The Discrete Fourier Iransform

Defipition: Iet R be a commutative rirg with unity, written &s
7 &0 integer > .1, and WK an element of R of order Ks 1,8,, 8
primitive K-th root of unity. Then the DISCRETE FOURIER
TRANSFORM (DFI) of the K-sequence (a0,&1,.. .,8(k-1)) is the K-
sequence r

(“.O’a" goe o,a(K-"1 }}

given by the following equations:

iJ
8 £ E a W 0<i<k-1 (1)
i i K
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Definition: Assuming the same conditions as above, and also,

a possesses a multiplicative inverse in R (i.e. 1/K), then
the INVERSE DISCRETE FOURIER TRALSFORM (IDFT) of the K-cequence
(80,aT,...,a(F=T)J) is the K-sequence

(5.0,&1 geoce ,a(}("‘1 ))
given by the following equations:

K- 1 ;
=13 ;
8 = (1/K) a W 0<i<k=1  (2)
i e K
14 =0 - :

If we co%sider the term ai*WK##(-i*j) to be rewritten as the
equivalent term .
k]

: . BI¥WK*R((K-1)#* )
then we cen rewrite the above equation as
K- 1 )
1y .
8= (1K) a W v (d)
J K-i K ! %
i= \
if we now define a(K) = a(0), then the inverse DFT can be

computed from the DIT by merely "fli ing" the input sequence.
Here, flig"ing consists in replacing the i-th texm by the (K-i)-
th term. ﬁus the same comgutational algorithm (for the DFT) can
be used to compute both the DFT and e IDFT. As nmight e
expected f{rom the terminology, under the right conditicns, ths
two transforms are inverses of each other, and thus provide
different representations of K~se%uences. The remainder of this
peper will concerned with determining some of the "rightv
conditions under which the DFT can be inverted. Note, also, that
the DFT (and the IDFT) are linear transformations from R*K to
R**K, (where R**K is the ring of K-tuples of elements of R with
component addition and multiplication) since the quentities
WK*#(i#j) are all “constants" for each application of the DIT,

For more intormation on this approach to the phenomenon of the
DFT, see Nicholson [10].

Tre computation of the DFT by classicel techniques ususll
involveu O(K**2) operations, "as the computation of eac
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transformed element took K multiplications followed by K-i
additions. However, Cooley and Tukey (5] demonstrated a
computation scheme b{ vhich the DFT of a K-sequence could be
computed in only O(K log X) operations. This method has becone
known as the Fast Fourier Transform (FFI). The key concept in
the reduction of” the computation time involves the fectoggzation
of K. In other words, for K highly comgosite, the DM be
computed by forming sub-sequences of the original sequence,
performing a DFT of fewer elements on them, then assembling the
resulting sequences. The goel here is not to develop the theo
surrounding the FFI (see Ccoley-Tukey [5]) but rather to instil
some feeling for the immense efficiency of this algorithm and
thus to motivate the desire to find as many ways as possible in
which it can be invoked. During the remainder of this paper, the
terms DFT and FIT will be used interchangeably, as they refer to
a computation function and a computation algorithm  which
correspond to each other.

The gm:ticular virtue of the DFT in many epplications results
from the following:

Definition: Iet A = (80,a1,.. .,a(K-1)) and B = (bO,b1,.. .,b(K-

wo K-sequences in R. Then the CONVOLUTION OF A ANL B,
written A*B, is the K-sequence C = (cO,c1,.. .,C(E=T1)) where the
¢j are defined as folleows:

K - 1
¢ o= a bj_i Qgi?@d. (3)
i=0 A
wvhere bn for n < O is defined as b(m+K).

Convolution Property of the DFT:

let A and B we as in the precedi.g definition. Ilet A’ and B’ be

}hetm’:‘r's of A and B respectively. Then the following equation
s true:

(A*B)* = A* x B’ (4)

wvhere "x" means corl@onent-wise multiplication of K-sequences. In
other vords, the DFI transforms the convolution operation in Rw*K
into the component-xultiplication in R¥*K, according to the
following commutative diagram:

L -

_— . .L-':.._"_




R¥#K x R#*K - R#¥YK X R##K
E.#. iuxu
v DFT )
R#*K > R##K
- f=2 Kﬂcwalt %K-‘Qb 3
= A N )
. K -
5 g‘o:‘ 430 i=0 Ll iR
»| -
- | (3-;)9 [ 3
- t Q‘ kd'twg K
J0 (=0
wel w, =)
4 | 1=
= Pl ( b
t20 Y v K
-t T TR e
¥ I 4 B
2 Q; W, b.,_
l=o0
A A
QED.

As a result of (4), the convolution of two K-sequences can be
computed in the following way:

1)compute the transforms A” and B’.of A and B
respectively.

2)perforn componentwise mul.tiplication on A® and B*
to obtain a K-sequence C’.

3)perform the inverse on C’ to obtain the
convolution sequence C.

Thus, the DFT provides a method (though not sn intuitive one) for
computing the convolution of sequences, assuning that the inverse
DFT of step 5 is possible; i.e., if we can turn the bottom arrow
around in the above figure. VWhat this requirement amounts to is
that we must able to compute & "true" inverse DFI.

Let us now look into the requirements for the invertibility of
*he DFT. If we aprly the inverse IFT of equation 2 to the
sequence of elements comruted via the DFT of equation 1, the
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following equations.will hold:
K- ! K-l K- L K| K-l I
/ JLi-R) Li~
O ACHIGE ) Jp WA IR, N
J: 0 Y Jroizp iz0 Y-

As a result, the IDFT, as defined originally, will be a true
inverse <===> a“hat-hat sub 1" = g®sub 1% for 1 < K=l <=>

K~i :
Jli-R)
zw,( = K. %bl O0ti, AeK-14
350 A
(Reccdl that delta(d J) = 1if 1z2 and O otherwise.) Notation:
g

Inasmuch as the foliowing quartity a pears quite frequently in
the rest of this paper, we use the fol owing -otation:

- \ t & -
A T 2 k=i
Using this notation, we obtain the requirement: The IDFI is an
inverse <===> S¥subh 1" = K delta(0,1 ). Thus, & reasonabie besis

upon which to build a useful DFT (i.e., one able to produce the
convolution) is to define:

Definition: let K be > 1. The Support.of & K-point DFT is a
commutative ring R with identity sucﬁ %ﬁﬁﬁ'”'" i o u

S1) There exists 1/K in R.
g% There exists wK in R whose order = K. {
i
|
1
|

Note that the support of an FFT is an “essantial'fggoperty of a
ring ; i.e., if a ring R supports a K-point and R is |

ggggained in a larger ring R‘, then R’ &lso supports K-point
S.

S*sub 1" = K delta{0,1) for 12 1 £ K1,

Two examples of support of a K-point DFT ere t omplex numbers: \
wvith WK being the complex number cos(2W/K)+i~T s r(2MWK), and |
also the algebraic nurber field ag£5 » where is a formal 5 {

solution to the equation x#*K = 1, is the ffeld of rational
numbers.

Section 3. Finite Computation Structures

This section deels with the problem of developing a sufficiently : |
rich generalization of the structure of modular rings of
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integers. The motivation for this generalization derives fronm
the desire to develop data structures whose underlying arithmetic
is precisely modular earithmeticc  This will enable the modelling
of a data structure within & collputer. As a result of this
thinking, we propose the following:

Definition: A Finite Com tation Structure is g commutative ring
with unity, having Tinite, non-zero characteristic. (Recall that
the characteristic of a ring is the smallest in*sger m such that
me = O for all a in the ring. See Lang [8] and Albert [

If the above definition holds, we sey that R is a finite
computation structure (fes) of charscteristic m. It can easily be
shown that if R is an fes' of characteristic m, then there exists
a subring S in R which is iseaorphic to the integers modulo m
(Z/m2z). Thus the finite computation structure concept
encompasses the class of gll moduwlar rings.of integers.
1083
i) Z/n2 for 211 integers m.
2 éZ/ng[xl,xz,g.. xn] for all m and ali n.
3) (Z/nZ)%*n for all m and all n, where multiplicetion is
compornent multiplication.
4) (Z/wZ)**n for all r and all n, where multiplication is
convolution of n-tuples.
5) GF(p**n) (field of P**n elementg) for all primes
P and all integers n > 0.

Section 4. Characterization of Modular Rings of Integers

In order to charscterize the class of finite computation
structures vis-a-vis the FFT, it is first necessary to consider
the case of modular rings of integers inesmuch as one of these
rings is embedded in every fcs. The goal of this section is to
charucterize those modular rings of integers which support a K-
int FFT. In order to do this, we will draw upon work down by
ollard [11]. In his work, Pollard ts forth neces
conditions for the suﬁport of FFT’s in modular rings of integers
(Theorem A). The method of this section is to prove the converse
of Pollard’s result (Theorenm B), eliminate a " case untoucheé¢ by
Pollard (Theorem C), and finally, remove unneeded hypotheses from
the resulting equivalence (Theorem D). For the procfs given in
this section, the author asswes the reader to have basic
understanding of elementary rumber theory (as in Crosswald [6])
and elementary group theory (as in Birkhotf and Mac-Lene [2])

Note: In the remainder of the paper w: will use the fcllowing
notational conveniences:
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Printed Writ+en Meaning
pi P, p sub i, 2 prime number
ei € e e sub i, a positive integer
glir**ei p;"" p sub i to the e sub i pover
E/mi The ring of integers rodulo nm
Zpi*ej e The ring of integers nmodulo
z/pfir the ei-th power of the prive ri
Z(m) RTlwm) ,. The multiplicative group cf zr
Z(piv*ei) %) The multiplicative group cf Zpi**ei
g(m) ‘P(“ phi of m, the Euler phi-function
wK Wy K-th root of unity

Thecrem A: Pollard°‘s theoren. Iet m be odd and
.‘
e T et
It K divides pi-1 for every prime pi dividing m, and if ‘therc
exists an element wK in Z(xﬂ such that the order of w¥ in

Z(pix*ei) is rrecisely K for all i, then the rodular ring Zm will
support a K-point FFT. 1

Proof: In order to prove this result, we go back to the .
re?ui'rements for K-point FFT su%)port.
(s1) Since K divides each pi-1 for all i, then K and pi are
relatively prime for all i. This implies that K is
relatively prime to the powers of the pi’s and also to
the groduct of the powers of the pi‘s. Hence, k is
relatively prime to m. This implies that K yrossesses an
inverse in Zm.
(S2) By hypothesis, there is an element wK.of order K for each
Zpi**ei, Then, this element also has order K within Zm.
(83) The case for 1=0 is trivial. The proof for 1 # 0 depends
heavily on: i

lemma A: Assume +the above hyrothesis with the additicnal

assumption that n=p¥**e for some prime p. Then Zm supports & K-
voint FFT.

Proof of lemnma:

(ST) ¥ divides p~1 and thus, K and p are relatively prime. As a
result, K has an inverse in lp*+re,

(82) By hypothesis, there exists an element wK of order ¥ in

ip¥te,
(S3) Agein, the case 1 = 0 is triviel, so we assume 1 is non-
ZET0. Consider now the expressions for Stsub 1", Ve

know that wK**K1=C%suyb 1% (wK-1). Clearly, the left hand
side of the atove equatior is zero as wK is a K-ta root
of uwiity. We need only show that S*su: 1" = Q (modulo
p**e), Ve can do this Tny showing that wK-1#0 (modulc p)
for then p**e would divice S'sub 1. Now, if wk =1
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(rcdulo p) then (w%,p)=1 and hence wK would be an elerent
of the subgroup {w in Zp**e such that (W,p)=1} of
Z(p**e). This subgroup has order P**(e~1) and Z(p*+e)
has order (p-1)p**(e-1). But wK is also an elerent of
the cyclic subgroup of Z(p**e) of order K consisting of
all the powers of wK. Hence, wK is a common elerent of
two subgroups of Z(p##e) having relatively prime orders,
hence the identity. Thus, wK = 1 {(modulo p*+e).
Contradiction. Thus, wK # 1 (modulo p) and S*sut 1" = (

(modulo prwe),
QED for lLemma.

To continue with the prool of the Theorem, we now let m =
prod(ri**ei,i,1,r) where the pi are distinct primes. By Iemms A,
we know that Zpiw*ei ywill support K-point FFT’s for ecch i. In
ticular, S"sub 1" = O (mod pi**ei) for each i. By using the
hinese Remainder Algorithm (see Lipson [S] for an excellent
discussion of the various Chinese Remainder gorithms) on the
relatively prime moduli pi**ei, we know that S"sub i* = 0 (modulo
prod(pi**ei,i,1,r)); i.e., zuodulo m). Thus the ‘three
conditions are satisfied and Zm supportsqgspoint IFT’s.

The next Theorem esents the converse to Theorem A and as such

characterizes conmp etely the odd numbers which can suprort K-
point FFT’s .

Theorem B: If 2o supports K-point FFT’s and nm =
praa{ri**ef:i,1,r), m odd, Egen K divides pi-1 for all i and
there exists an element wK in Zn such that wK is of order K in
Zpi*¥*ei for all i.

Proof: Since Zm supports K-point FFI1’s, then by S1, K has an

verse in Zm and hence K and m are relatively prime. It follows
that K and pi are relatively prime for each i. Thus, K does not
divide pi for all i. Next we can show that the marn

VQ
U:iin — >;\:|'Zpi“ei
' ! Y
given by x) = (x mod pi**el,x mod pe¥#e?; .. .,x mod fr**er)) is

8 ring isomorphism and thus induces a oup isomorphisn. between
Z(n) and T Z(pi**ei). First note thet ihe order of Z(m) is

QUmy = ‘?"ﬁ'f’c‘e‘) - i‘lj 9(?;") ='ﬁ"L-p;-|Lp,-e""

ey
wherens the order of Z(pi*%ei) is given by

Qpt) = (-1,

g=1

= e M W VY AT

S e o
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We know that if wK has corder K in Z(m), then K must divide the
order of Z(m). Since X does not divide any pi, then K divides
the product preod{pi-1,i,1,r). FLowever, we now show that K

divides each factor pi-1. By the 7rd requirement for K-pcint FFT
suggort (S3), we are gusranteed that S"sub 1" = 0 (mocdulo m =
pi*%ei), for all 1 < K-~T and not zero. Since the pi**ei are all
relatively prime, Then S¥sub 1% = O (modulo pi*tei) for all i.
Now consider the order of wK in Z(pi**ei), say K1. Clearly, K1
divides K. If K1 does not equal K then S%sub K1% = 1+wK**K1+
WK 2K 1+, 0021 +141...=K (moduic pi**ei), since the order cf wi is
K1. But K and pi®**ei are relatively prime for all pi and hence K
# 0 {vodulo pi®**ei;. We are then Jeft with the conclusion that
if K # K, then S%sub K1 # 0 (mod pi#ei), which is a
contradiction. Thus, wK has order K in esch Z(pi**eig. Thus, K
divides the order ct the group, i.e., (pi-1)pi#**(ei-1), Since K
and pi are relatively prime, then K div ggg pi-1 for every i.

! *

Having finished categorizing completely the case of odd moduli,
we consider now the possiblity of even moduli supporting K-point
FFT’s. T.is possibility is discarded by the following thcorem.

Theorem C: No even modulus can support an FFT.

Proof: We assume here that K is non-trivial; i.e., K > 1. 1In
order to sugggrt a K-point F¥T with a modulus m which is even, we
sust have t K possesses an inverse in Zm. This condition is
equivalent to saying that K and m must be relatively prime and
hence that K must be odd. If there exists an element wK in Zm of
order K, where we now write m = prod(piw*ei,i,1,r) with pi=2,
then by means of the isomorphism described in Theorem B, the
order of wK in Z(2**e1; must divide K. However, since the order
of Z(2**e1) is 2#*(el1-1), the order of wK in Z(2%*el1) can only be
even or.1. It can not be even as it must divide K. Thus we are
left with the fact that the order of wK in Z(2#%e1) must be 1;
i.c., vk = 1 (modulo 2#*e1). 1In order to complete our proof we
lock at the possible cases for m:

Case 1: m= 2%%e1l,

In this case, wK has order 1 in Zm = Z2%*e1 and hence
cannot have oxder K.

Case 2: m = nl1 * 2Z¥#el yhere ml is odéd.
If we now invoke condition S3 for IFI support, then S"sub
1" must = O (modulo mi1 *# 2#%e1), Since w1 and 2%*.? are
relatively prime, this implies that S®sub 1" = 0 (»_Julo
2#*e1) for all 1 < K. If we now look at S"sub i* ’ ,wever,
we find that S*sub 1" = 1 + WK + wK*2 4+ ... ="+ 1+ 1
+ o +o (modulo 2%*e1) (since wk =1 (modulo 2¥#el1)) = K
(modulo 2%*e1), which is not equal to O, =5 K is odd.
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Thus, S“subi1v jig not zero znd we have g contradiction.

Since both cases yvield a contradiction,

we have the resuvit that
even moduli cannot support FFT°s.

Q=D.

The last theorenm in this section combines all the results of this

sertion and provides for the complete characterization of mocdular
rings of integers which support the FFT.

Theorem D: zm Suppor ¢s K-point FFT’s if and only if K divides
pi=T for every prime pi divfging m.

Proof: Using theorems A,B and C, we see that we need only prove
the Tcllowing assertion in order to obtain the above result:

If K divides Ei«1 for all primes gi dividin% X, then there exists
Wi D

gn‘ element in Zm of order X ip each Z(pi**ei) (and hence in
m)e

The argumeni Froceeds as follows:

1. Everg Z(pi**ei) possess primitive roots.of unity;
€., elements ri of order the same as Z(pi*'ei;
which is (pi—1)p1**(ei~1). (See Grosswald [6].

2. The element wi define?‘hye .
" - “"
w, = (-iLLK—)'P" Cmodade '}3;")

hes order K in Z(pi**ei) since K divides pi-1
and order(riwn) = order(ri)/gcd(n,orﬂer(ri)) = K,

vhere
ne (B) g4

3. The element wK which is the unique solution (modulo m)
to the following family of congruences:

vK = wi (HIOdU.lO pi**el) i=1

9000,

1s an element of order K in z(pis*ei) for all i
and thus of order K in Znm.

Thus ve see that if the hypothesis holds, we can always find an
element of the desired order. As s result, the hypothesis of

existence of K-th roots of unity in the equivalence implied by
Thorer:: A, B and C is redundant.

A final remark concerns the removal of the hypothesis for odd
primes from Theorems A and B. Inasmuch as K must divide pi-1 for
eech i and that K is not 1, ther the statement that the pi rust

o

m—




LI N, N W ——

Thus §° supports K-point FFT°’s,

PAGE 12

be odd is redundant. With the two removals of restrintions as
described above, ‘he equivalence of Theorens A, B and C rasult in
exactly the statement of Theorem D,

QED,

Sug%ggx: Utilizing the various theorens fresented in this
Section, we hawve provided & complete character zation of modular
rings of inteecers supporting the Fast Fourier Transforms.

Examg%es:
)" a7, 80 support only 2-point FFT’s (with Wk = -1),

2. Similari y L3%%e can only support 2-point FFT’s for all e.
5« 8-point “s can be performed in Zm

for eny nm
of thke form prod Bei+l)muej 4 9

r) for arbitr
r and ci, where 8ci + 1 is prime: =

€.8.y 1T#ng, 23nke’) 17ane @ S3nne’,

Section 5: Extension Yo Finite Computation Structures

As we have seen in section 4, only certain Dodular rings wiil
support K~point FFT’s

« We now extend this result to include some
of the finite computation structures,

lheorem: If R is a finite computation structure of
craracteristic m, then R supports a K-point FFT if X divides -1
for every prime P dividing m.

Proof: Let K divide 1. for a1l primes dividing m. Then by
Theorenm D we know that g_

/DZ supports a K-point FFT. As g result,
the requirements S1, S2 and S3 of section 2 hold in Z/wZ. Since
R is en fecs of characteristic B, then there exists g subring S of

isomorphic to Z/m2. cause all of the requirements for
support of an FFT involve on1¥ rin% crerations, then any
isomorphic copy of Z/wZ will s sfy the su gort requirement.,
gy : e definition of

Note: 1If Q:2/m2 ——> R is the isomorphism onto & subring of R,
then Q(wK) is g8 K-th root of unity i

n R. Thus, knovledge of
@odglar K-th roots of unity will be sufficient
in R.

to compute FFT’s

R VA —
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Section 6: Applicuiions

The results presented have been applied to the rroblens of
computing products and powers of symbolic nmuitivarizte
golynomials over the integers (see [3] and [4]). The following
rief example examines the a¥ lication of the FIT in a f'nite
coTputa;ign structure to he computation of products of
ynomi ds.
Egt f and g be univariate polynomials over some coefficient ring

R,iwith the degree .of f = m and the degree .of g = n. We cen thus
write:

Fimy = qg+a,4+0,8%+ .- + a 1™
%Mﬁ'—‘- bp+’b.1"" ngtﬁ‘ OS 08 B *bn«vno
The product polynomial h(x) = f(x)*g(x) can then e written as

L]
heey = Co + ¢4 ¢ Cuate ... +c.mm4¢"*‘
where the coefficients ci are computed by

¢, = agb .

{=sD
If we set K = m4n+1 and fcrm 2 K-sequences
A = LQQ,Q."",Q”"Q)"')O3
B = (b.'b\).‘.'lb“,o""lo))

then the K-sequence C given by

€ B G B 5 8 RO

is precisely the ccnvolution of A and B, as defined in Section 2.
As a result of this observation, if the coefficient ring K
supports K-point FFI’s, the the product polynomial, h(x) can be
computed using FFI’s as follows: .
1) Form the 2 K-sequences A and B
2) Apply a K-roint FFT to each sequence, yielding R and B
3) Multiply R and B component- wise, yielding in C.
4) Aprly the inverse K-point ¥FT to obtain C, which is
the sequence of coefficients of the product
golynomial h.
In particular, if the coefficient ring is the integer, we cannot
perform F¥T’s as there are no roots of unity other than 1 and -1.
However, if the largest coefficient (in absolute value) in A, B
or C is bounded ll, then we can embed f(x) and g(x) in the
polynomial ring Zm[x], where m > 2 and Zm supports K-point
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F¥T’s. Then, the application of the 4 steps rentioned abcve will
compute the product

Rix) = F(x) g (%)  (medulo w)

However, since the moximum coefficient is less then m/2, then
h(x) = f(x)g(x) anc we are finished.

Similesly, if the coefficient ring R = i[y] (i.e.; f anc g are
bivariate polynomials in x and y over the integerss: we cen erbed
f and g in Zm[x,y] where m  is sufficiently large and Zr[y]
supports K-point FFI’s. Again, application of the 4 sters given
above will yield a polynomial

ﬁ'w.ix - H”"‘i\ (2, ¢y moduls ),
g?t Ti?ce )m 1s chosen appriprizcély, h(x,y) actually equals
Xy YIE\XyY)o

The computaticn of powers of rolynomials yroceeds in an aralofous
manner. Studies Ezrformed on these twoc computationsl rroblens
have indicated that the FFT methods provide significant
improvement in the efficiency of these algorithms for a lerge
class of rolynomials. (See Bonneau [3] [4]).

s !

Section 7: Summary _

This gaper has presented several results relating modular
arithmetic schemes and the Fast Fourier Transi'orr. In
rticular, the classes of modular rings of integers in which the
T may be computed is completely characterized by the prime
deccmposition of the modulus. Also, an extension of this result
for computation structures similar to modular rings of integers
yields a sufficiency hypothesis for the computation of FFI.

Further research in this area might be motivated bty the desire to
find necessary and sufficient conditions for FFT surport in
finite comgutation structures or in general rings. As an
example, Nicholscn [10], using the definition of IFT to be a
transformation which “takes “convolution-preduct® rings into
“component~product” rings, provides the result that FFI’s are
supported 1in division ri (i.e., rings with no zero divisors)
iff the ring contains a particular Hrimitive root of anity. It

would be rost desirable to extend this type of result to & larger
class of rings.

VO b ol Wt o PR e
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